Ela Using Least-squares to Find an Approximate Eigenvector∗
نویسندگان
چکیده
The least-squares method can be used to approximate an eigenvector for a matrix when only an approximation is known for the corresponding eigenvalue. In this paper, this technique is analyzed and error estimates are established proving that if the error in the eigenvalue is sufficiently small, then the error in the approximate eigenvector produced by the least-squares method is also small. Also reported are some empirical results based on using the algorithm.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملOPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملEla Least Squares (p,q)-orthogonal Symmetric Solutions of the Matrix Equation and Its Optimal Approximation∗
In this paper, the relationship between the (P,Q)-orthogonal symmetric and symmetric matrices is derived. By applying the generalized singular value decomposition, the general expression of the least square (P,Q)-orthogonal symmetric solutions for the matrix equation AXB = C is provided. Based on the projection theorem in inner space, and by using the canonical correlation decomposition, an ana...
متن کامل